Wednesday, April 5, 2023

Global Positioning System (GPS) and other similar Global navigation satellite systems (GNSS)

The U.S. Global Positioning System (GPS) and other similar Global navigation satellite systems (GNSS) are generally not suitable to establish indoor locations, since microwaves will be attenuated and scattered by roofs, walls and other objects. However, in order to make the positioning signals become ubiquitous, integration between GPS and indoor positioning can be made.[23][24][25][26][27][28][29][30]

Currently, GNSS receivers are becoming more and more sensitive due to increasing microchip processing power. High Sensitivity GNSS receivers are able to receive satellite signals in most indoor environments and attempts to determine the 3D position indoors have been successful.[31] Besides increasing the sensitivity of the receivers, the technique of A-GPS is used, where the almanac and other information are transferred through a mobile phone.

However, despite the fact that proper coverage for the required four satellites to locate a receiver is not achieved with all current designs (2008–11) for indoor operations, GPS emulation has been deployed successfully in Stockholm metro.[32] GPS coverage extension solutions have been able to provide zone-based positioning indoors, accessible with standard GPS chipsets like the ones used in smartphones.[32]

Types of usage[edit]

Locating and positioning[edit]

While most current IPS are able to detect the location of an object, they are so coarse that they cannot be used to detect the orientation or direction of an object.[33]

Locating and tracking[edit]

See also: Waypoint and point of interest

One of the methods to thrive for sufficient operational suitability is "tracking". Whether a sequence of locations determined form a trajectory from the first to the most actual location. Statistical methods then serve for smoothing the locations determined in a track resembling the physical capabilities of the object to move. This smoothing must be applied, when a target moves and also for a resident target, to compensate erratic measures. Otherwise the single resident location or even the followed trajectory would compose of an itinerant sequence of jumps.

Identification and segregation[edit]

In most applications the population of targets is larger than just one. Hence the IPS must serve a proper specific identification for each observed target and must be capable to segregate and separate the targets individually within the group. An IPS must be able to identify the entities being tracked, despite the "non-interesting" neighbors. Depending on the design, either a sensor network must know from which tag it has received information, or a locating device must be able to identify the targets directly.

--
You received this message because you are subscribed to the Google Groups "1TopReadys1" group.
To unsubscribe from this group and stop receiving emails from it, send an email to 1topreadys1+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/1topreadys1/CAForgrQ3LW_9%2BAZUXhWXQGTYCmr_SuHTAJrThJLZm8S630uh5g%40mail.gmail.com.

No comments:

Post a Comment